\\C_‘ INTRODUCTION TO C++

Introduction to C++ is a clear,

beginner-friendly textbook that

guides you from your first

program through core

programming fundamentals,

including variables, control

structures, loops, functions,

arrays, structures,andan ===

introduction to object-oriented @ =

programming. = ceeee.

C++ FUNDAMENTALS

@ www.meerkat.pub

DR. KEVIN ROARK | 2026 EDITION

Book Overview

Introduction to C++ is an approachable textbook ideal for first-time programmers embarking on the field of
computer science. Crafted with clarity, a thoughtful structure, and practical examples, this publication
guides readers through the fundamental concepts of programming with C++, one of the most versatile and
widely used programming languages in educational and industrial settings worldwide.

Suitable for introductory courses, this book systematically introduces the essential building blocks of
programming: variables, control structures, loops, functions, arrays, structures, and an introductory
overview of object-oriented programming. Each chapter is carefully sequenced to build on the previous
one, facilitating the development of solid foundational knowledge and enabling students to progressively
and confidently acquire their skills.

This digital textbook is complemented by more than 50 professionally produced video tutorials that
explicitly demonstrate C++ syntax, clarify complex topics, and guide learners through comprehensive
coding examples. These visual resources serve to enhance understanding and make programming more
accessible to individuals from diverse backgrounds.

Throughout the course, learners can utilize practical exercises, including creative programming
laboratories, thematic assignments, and engaging projects, designed to stimulate creativity and develop
critical skills. Whether constructing a student information management system, creating a game-inspired
application, or designing a menu-driven utility, learners not only refine their coding abilities but also
cultivate confidence in problem-solving, approaching challenges with motivation and enthusiasm.

Key Features of Introduction to C++

Beginner-Friendly, Easy-to-Read Format. This textbook is thoughtfully written with clarity and purpose,
making it perfect for students who are just starting out and have no previous programming experience. The
book breaks down complex topics into simple, manageable sections to help you learn with confidence.

Includes Over 50 Professional Video Walkthroughs. Each major topic is paired with engaging video
demonstrations that guide students through coding examples, syntax explanations, and best practices.
This approach helps turn abstract ideas into a clear, tangible understanding.

Flexible Delivery Options. Designed to support multiple teaching formats:

Self-paced learning

Instructor-facilitated courses

Face-to-face classroom instruction
Synchronous or asynchronous online delivery

Hands-On Labs and Creative Projects. Each module features themed lab assignments designed to
reinforce concepts through engaging practice and creativity. This approach helps students connect with
what they’ve learned in a meaningful and personal way.

Designed specifically for college students and adult learners. The book is thoughtfully organized to align
with college-level learning outcomes. It's a wonderful choice for academic programs and workforce
training, providing support and relevance every step of the way.

Available online and as an i0OS/Android app. Students can easily access the textbook on any device,
whether via the web or via iOS or Android apps. The platform remembers where they paused and visually
shows their progress through each module, making learning more seamless and encouraging.

Who This Book Is For

e First-Time Programmers - Whether you're just starting college or exploring programming for the first
time, this book assumes no prior experience and builds from the ground up.

e Career Switchers and Industry Trainees - Ideal for workforce training programs or individuals
transitioning into tech, the book offers clear explanations, hands-on practice, and real-world context.

e High School Dual Credit and College-Level Courses - Designed to meet the needs of dual-credit
programs and introductory college courses, supporting both academic rigor and student accessibility.

Course/Textbook Overview

Module 1 Overview:

In this Module, you'll start your exciting journey into computer programming with the C++
language. We’ll begin with the fundamentals - what programming is, why it’s important, and
how C++ fits into the tech world. One of your first fun milestones will be writing the classic
"Hello, World!" program, giving you a friendly introduction to compiling and running code.
From there, you'll discover how to create variables, understand data types, and start writing
simple programs that do exactly what you want.

As you get more comfortable with the basics, you’ll learn how to communicate with the user
by displaying output using cout. You’ll discover how to make your output neat and
professional with formatting tools like setw, setfill, and setprecision. Then, you’ll flip the script
and learn how to take input from the user using tools like cin, getline(), and cin.get(). Along the
way, you’ll tackle common input issues and pick up essential tricks like using cin.ignore() and
cin.clear() to manage the input buffer and keep your programs running smoothly.

Each concept builds on the last, helping you develop the problem-solving and logical thinking
skills you'll need as we progress to more advanced topics, such as decision-making, loops,
functions, and eventually, working with objects.

By the end of this module, you will be able to:

1. Explain the basic structure of a C++ program and write simple programs using appropriate
syntax and comments.

2. Declare and use variables of different data types to store and manipulate values within a
program.

3. Display output using cout and apply formatting tools like setw, setfill, and setprecision to
improve program readability.

4. Receive input from users using cin, getline(), and cin.get(), and understand how to manage
the input buffer with cin.ignore() and cin.clear().

5. To build more robust programs, identify and resolve common input-related issues,
including input mismatches and skipped lines.

6. Design and implement interactive console applications that collect and process user
input to generate meaningful output.

Module 2 Overview

In this module, you will elevate your programming skills by building more innovative, more
interactive programs. So far, you’ve written simple code that collects input and displays
output. Now, you’ll learn how to create programs that can make decisions, handle different
data types, and even store and retrieve information for later use.

You will explore type casting, a technique that enables you to convert between data types,
ensuring your calculations remain accurate and flexible. You’ll also make use of predefined
C++ functions to perform tasks like calculating powers, manipulating characters, and
formatting output - all with just a single line of code.

As you progress, you’ll learn how to work with files, enabling your programs to save results
and load data. This opens the door to creating more useful and real-world applications. You’ll
also discover how to use if, else if, and else statements to guide your program’s behavior
based on user input or conditions.

In addition, you’ll practice handling input errors so your programs can respond to unexpected
input without crashing. Finally, you’ll learn to build menu-driven programs using switch
statements, giving users clear and organized choices.

By the end of this module, you will be able to write programs that are more dynamic, flexible,
and ready to solve real-world problems. You’ll gain the tools to guide users, manage data, and
make your code come alive.

By the end of this module, you will be able to:

e Convert between data types using both implicit and explicit type casting to support
accurate calculations and data handling.

e Use predefined C++ functions such as pow(), sqrt(), abs(), toupper(), setprecision(), and fixed to
perform mathematical operations, manipulate characters, and control output formatting.

e Create and write data to external files using ofstream, and format output for clear
documentation and reporting.

e Read input from external files using ifstream, and process that data within a program to
generate meaningful results.

e Use conditional structures such as if, else if, and else to guide program flow based on user
input or data conditions.

e Implement switch statements to handle multi-option decisions in a clean and structured
way.

e Handle common input errors using tools like cin.fail(), cin.clear(), and cin.ignore() to make
your programs more robust and user-friendly.

e Apply formatting tools to control numeric output display using fixed, setprecision(),
showpoint, and setw()for cleaner and more professional program output.

Module 3 Overview

In this module, you will enter the world of loops - a powerful tool that allows your programs
to repeat actions automatically. Instead of writing the same code over and over, you’ll learn
how to use loops to process repeated input, perform automated calculations, draw patterns,
build simple game-like systems, and create interactive menus.

You will explore the three main types of loops in C++: while, for, and do-while. Each has its
purpose, and you'll learn when and why to use each one. Along the way, you'll strengthen

your understanding of important programming concepts like input validation, counters,
random number generation, decision-making, and output formatting.

By the end of this module, you will be writing programs that are smarter, more efficient, and
far more interactive. Loops are one of the most essential tools in programming, and once you
learn to control repetition with logic and precision, you’ll unlock a whole new level of
problem-solving power.

By the end of this module, you will be able to:

Explain the purpose of loops and when repetitive processing is needed in a program.

Use while loops to repeat actions based on a condition.

Use for loops to repeat actions a specific number of times with a counter.

Use do-while loops to perform actions at least once before checking a condition.

Use nested loops to solve multidimensional problems, such as constructing tables and

patterns.

Design menu-driven programs that allow users to make repeated choices until they exit.

e Validate user input inside loops to ensure correct and safe data entry.

e Apply logical operators (&8&, I, !) within loops and conditions to build flexible and powerful
logic.

e Control loop behavior using break and continue statements appropriately.

e Use formatting manipulators (setw, setprecision, setfill) to create clean, readable program
output.

e Solve real-world problems by combining loops, conditional structures, and arithmetic

operations.

Module 4 Overview

In this module, you’ll make exciting progress as a programmer by learning how to craft and
utilize your own functions in C++. So far, most of your code has been within the main()
function, which is appropriate for small projects. But as your projects grow, managing
everything in one place can become somewhat overwhelming. That's where functions come
in - they let you split your code into smaller, clear sections, each focusing on one specific
task. This not only makes your code easier to read and debug but also more reusable, helping
you become even more confident in your coding journey!

Throughout this module, you’ll learn how to define functions, pass information into them
using parameters, and return values to the part of the program that needs them. You’ll also
explore more advanced features like default arguments and function overloading, and learn
how to organize your projects into separate header and implementation files, just like
professional developers do. By the end of this module, you’ll be writing programs that are
better structured, easier to maintain, and ready to scale as your skills grow.

By the end of this module, you will be able to:

e Explain the purpose of functions and how they improve code organization and
readability.

e Define and call functions that perform specific tasks using proper syntax.

e Use parameters to pass information into functions and return values to pass results back.

e Apply function overloading and default arguments to make functions more flexible and
reusable.

e Distinguish between pass-by-value and pass-by-reference and know when to use each.

e Demonstrate modular program design by separating code into header and
implementation files.

e Write programs that use multiple functions to manage logic in a clean, maintainable
structure.

Module 5 Overview

In this module, you will learn how to store and manage multiple pieces of related data using
one of the most essential tools in programming: the array. Up until now, you’ve used variables
to hold single values like a name or a score. However, many real-world problems involve
handling lists of information, and arrays make this possible by allowing you to store multiple
values under a single variable name.

You will begin by working with one-dimensional arrays, which are well-suited for storing a
series of numbers or strings. Then, you’ll explore parallel arrays, which allow you to keep track
of connected data, like a student’s name and their exam score, side by side. You’ll use loops
to efficiently input, display, and process these arrays, and practice everyday tasks such as
calculating totals, averages, and identifying the highest or lowest value.

As you build your skills, you’ll also learn how to pass arrays to functions, making your code
cleaner and easier to reuse. You will implement basic search algorithms to locate specific
values in a list and use sorting algorithms, such as bubble sort and selection sort, to organize
the data in a meaningful way.

By the end of this module, you will be able to create programs that work with groups of data,
process and analyze that information, and present useful results to users. Arrays are a key
building block in programming, and this module will prepare you to use them with confidence.

By the end of this module, you will be able to:

e Define what an array is and explain when and why arrays are used in programming.

e Declare, initialize, and populate one-dimensional arrays using both direct assignment and
user input.

e Use loops to access, display, and process elements in an array.

e Create and manage parallel arrays to store and process related data, such as names and
scores or products and prices.

e Write functions that accept arrays as arguments, thereby enabling modularization and
code reuse.

e Implement search algorithms, such as linear and binary search, to locate values in an
array.

e Implement sorting algorithms, such as bubble sort and selection sort, to sort array data.

e Track totals, averages, maximums, and minimums using arrays and loop-based logic.

e Avoid common pitfalls such as accessing out-of-bounds indices.

Module 6 Overview

In this module, you'll take a big step forward in building real-world C++ programs by learning
how to organize and manage collections of data using vectors and structures. These two tools
are really important for creating clean, scalable, and meaningful programs. You will begin with
vectors, which are flexible, dynamic lists that allow you to store and manage multiple items,
such as scores, names, or inventory data. You'll learn how to add, remove, and access
elements in a vector, and how to pass vectors to functions. You will also examine how vector
performance varies with memory usage.

Next, you will explore structures, which help you group related data into a single custom type.
For example, instead of handling a name, ID, and GPA as three separate variables, you can
define a Student structure and treat them as one cohesive unit. You’ll learn how to define
structures, store them in vectors, and pass them to functions for processing and display.

By the end of this module, you will be able to:

e Declare and initialize vectors to store dynamic lists of values.

e Use built-in vector functions such as push_back(), pop_back(), clear(), size(), and resize() to
manipulate vector contents.

e Pass vectors to functions by value, reference, and const reference, and understand the

implications of each.

Access and modify vector elements using indexing and loops.

Define custom struct types to group related data into meaningful records.

Create and use vectors of structures to manage lists of structured data.

Write functions that accept and return structures or vectors of structures.

Display vector and structure data using formatted output with iomanip.

Organize code into multiple files, using header (.h) and implementation (.cpp) files, to

improve modularity.

e Develop interactive programs that utilize vectors and structures in real-world
applications.

Module 7 Overview

In this module, you will take one of the most important steps in your journey as a programmer:
learning about classes and objects. This is your first introduction into object-oriented programming
(OOP), a powerful way to design programs that more closely reflect the real world.

So far, you’ve built programs using variables, functions, arrays, and structs to complete tasks step
by step. While this procedural approach works well for small programs, it can become challenging to

manage as your code grows. That’s where OOP comes in. With classes and objects, you’ll learn how
to bundle data and the actions that go with it into reusable building blocks.

In this module, you will walk through a real-world example step by step: creating a Car class. You’ll
see how objects can store their own data and know how to perform their own actions, like
displaying details or updating information. This hands-on approach will help you connect the
concept of classes to working code.

By the end of this module, you will understand not just the syntax of classes but also the mindset of
object-oriented thinking. You’ll begin writing cleaner, smarter, and more organized programs that
prepare you for more advanced topics.

By the end of these sections, you will be able to:

e Explain the purpose of classes and how they are used in object-oriented programming

e Define a class that includes both data members (attributes) and member functions
(methods)

e Understand and use access specifiers (private, public) to control access to class members

e Create objects from a class and access their functions and data using dot notation

e Write and use constructors to initialize objects, including both default and parameterized
constructors

e Use setters and getters (mutators and accessors) to modify and retrieve private data
safely

e Understand the principle of encapsulation and how it protects data and simplifies design

e Organize class code across header (.h) and implementation (.cpp) files using best
practices.

e Begin thinking about software design in terms of objects and their responsibilities.

Module 8 Overview

In this module, you will bring together many of the programming skills you've learned
throughout the course and apply them to more advanced, real-world techniques. You will
focus on two key features in C++ that help make your code more organized, scalable, and
professional: vectors of objects and namespaces.

You’ve already used vectors to store lists of basic data types like integers and strings. Now,
you’ll take that concept further by storing entire objects inside a vector. This will enable you
to manage more complex data structures, such as groups of employees, game characters, or
inventory items, using object-oriented programming principles.

You’ll also be introduced to namespaces, a tool designed to help you avoid naming conflicts
and keep your code well-structured. Namespaces are especially helpful when your projects
grow larger or when you're working with code from multiple sources or teammates.

By the end of this module, you will be able to:

e Understand how to define and use classes to create objects in C++
e Store and manage objects using vectors

Access and manipulate object data stored within a vector

Write functions that process vectors of objects

Organize code using header and implementation files for class definitions
Explain the purpose of namespaces and how they help prevent naming conflicts
Use the std namespace and create custom namespaces in your own programs

Build modular, object-based programs that apply the concepts learned throughout the
course

