.
- - -,
Lo L
k-
a !

w}) JAVA - ADVANCED OBJ
ORIENTED PROGRAMMING

el

i

g

<>

« CLASSES - OBJECTS
- . = INHERITANCE
EllEsgEes . - + ASSOCIATION
SR <« POLYMORPHISM
DATA STRUCTURES

GENERICS
INTERFACES
e AUTOMATED TESTING
e DESIGN PATTERNS
e« OOP BEST PRACTICES

4 = DR. KEVIN ROARK | 2026 EDITION


http://www.meerkat.pub/

Book Overview

Java Object-Oriented Programming is a comprehensive, student-friendly textbook designed for learners
ready to advance beyond basic programming into object-oriented design. Whether you’re pursuing a
degree in Computer Science, preparing for a career in software development, or simply eager to deepen
your programming skills, this book provides a clear and engaging path to mastering Java and core OOP
principles.

Organized into focused, progressive modules, the textbook blends theory with hands-on application.
Students explore Java fundamentals through the lens of object-oriented concepts, including classes,
objects, inheritance, polymorphism, composition, interfaces, exception handling, and design patterns.
Every topic is reinforced with real-world examples, guided demos, lab assignments, and video-style
walkthroughs that make abstract ideas tangible. Each chapter is designed to build both technical skills and
a deeper understanding of software architecture, fostering computational thinking and professional-level
problem-solving.

With a strong emphasis on clean coding practices, maintainable design, and the practical application of
OOP principles, Java Object-Oriented Programming prepares students for both academic success and
future roles in the software industry. The content is accessible and adaptable, making it ideal for classroom
instruction, hybrid learning, or self-paced study.

This digital textbook is enhanced by a library of video tutorials that guide learners step by step through
Java syntax, object design, and project implementation. These visual aids clarify complex concepts,
demonstrate coding best practices, and build confidence through guided examples.

Throughout the course, students engage in meaningful projects that range from building class hierarchies
and interactive applications to designing modular, scalable systems. Assignments are intentionally tied to
practical themes, ensuring that learners not only understand Java syntax but also how to use it to create
real-world solutions. These experiences reinforce key concepts while cultivating a professional approach
to problem-solving, preparing students to write code that is robust, reusable, and ready for production
environments.

Key Features of Object-Oriented Programming with Java

Beginner-Friendly, Easy-to-Read Format. This textbook is thoughtfully written, clear, and purposeful,
making it ideal for students who have introductory programming experience. The book breaks down
complex topics into simple, manageable sections to help you learn with confidence.

Includes Over 50 Video Walkthroughs. Each major topic is paired with engaging video demonstrations that
guide students through coding examples, syntax explanations, and best practices. This approach helps
turn abstract ideas into a clear, tangible understanding.

Flexible Delivery Options. Designed to support multiple teaching formats:

Self-paced learning

Instructor-facilitated courses

Face-to-face classroom instruction
Synchronous or asynchronous online delivery



Hands-On Labs and Creative Projects. Each module features themed lab assignments designed to
reinforce concepts through engaging practice and creativity. This approach helps students connect with
what they’ve learned in a meaningful and personal way.

Designed specifically for college students and adult learners. The book is thoughtfully organized to align
with college-level learning outcomes. It's an excellent choice for academic programs and workforce
training, providing support and relevance at every step.

Available online and as an iOS app. Students can easily access the textbook on any device, via the web or
the iOS/Android app. The platform remembers where they paused and visually shows their progress
through each module, making learning more seamless and encouraging.

Who This Book Is For

e Students who have completed an introductory programming course — This book is designed for
learners who already have a foundation in basic programming concepts and are ready to take the next
step into object-oriented design and development with Java. It builds on that prior experience,
guiding students from fundamental OOP principles to advanced applications through a blend of
theory and hands-on practice..

e Career Switchers and Industry Trainees - Ideal for workforce training programs or individuals
transitioning into tech, the book offers clear explanations, hands-on practice, and real-world context.

e High School Dual Credit and College-Level Courses - Designed to meet the needs of dual-credit
programs and introductory college courses, supporting both academic rigor and student accessibility.



Course/Textbook Overview

Module 1: Introduction to Programming in Java

This module is designed to lay the groundwork for your journey into Java programming. Whether you're
new to Java programming or looking to solidify your understanding of Java fundamentals, this module will
provide you with the essential knowledge and skills to write basic Java programs.

Throughout this module, you'll explore the core programming concepts using Java as the learning vehicle.
You'll set up your development environment, write and run your first Java programs, and delve into the
fundamental building blocks of the language, such as variables, data types, operators, control flow
statements, and methods. By the end of this module, you'll be equipped with a solid foundation to tackle
more advanced topics in subsequent modules.

By the end of this module, you will be able to:

e Define the programming purpose and describe the key features and benefits of the Java programming
language.

e Install the Java Development Kit (JDK) and configure an Integrated Development Environment (IDE)
for Java programming.

e Explain the structure of a basic Java program, including the role of classes, the main method, and
keywords like public, static, and void.

e Write and execute a simple Java program using both the command line and an IDE.

e Declare and initialize variables using Java’s primitive data types and proper naming conventions,

including the use of constants with the final keyword.

e Perform calculations and create expressions using arithmetic, assignment, relational, and logical
operators.

e Create formatted console output with System.out.printf() and read user input with the Scanner class.

e Implement control flow structures, including if statements, switch statements, and loops (for, while,
and do-while).

e Differentiate between implicit and explicit type casting and apply data type conversions in programs.

e Write clear, maintainable, and readable code by using comments effectively and adhering to coding
best practices.

Module 2: Introduction to Object-Oriented Programming

Object-oriented programming (OOP) is one of the most critical programming paradigms in software
development. It allows developers to model real-world entities as objects, making programs more modular,
reusable, and maintainable. In this module, we will explore the key principles of OOP and how they are
applied in Java. You will learn to define and use classes and objects, implement encapsulation, and
understand concepts such as inheritance and polymorphism, as well as critical concepts like abstraction.

By mastering the fundamentals of OOP, you will be equipped to write more efficient, flexible, and
maintainable Java programs. This module will also cover essential topics like exception handling, static
members, testing and debugging, and best practices for writing well-documented code using JavaDoc.

By the end of this module, you will be able to:



e Explain the four key principles of Object-Oriented Programming (encapsulation, inheritance,

polymorphism, and abstraction) and describe their benefits for modularity, reusability, and

maintainability.

Define Java classes, create objects, and use constructors to initialize them.

Apply access modifiers (public, private, protected) to control visibility and access to class members.

Use the this keyword in object-oriented contexts to reference the current instance of a class.

Utilize standard methods from the Object class, such as toString(), equals(), and hashCode().

Implement encapsulation by using getters and setters to manage private data and ensure data

integrity through validation.

e Differentiate between instance and static members, and use the static keyword to define class-wide
variables and methods.

e Handle exceptions effectively using try-catch blocks, the finally block, and Java's exception hierarchy.

e Use debugging tools to identify and resolve errors, including setting breakpoints, stepping through
code, and inspecting variables in an IDE.

e Write JavaDoc comments to document classes, methods, and fields, and generate professional
HTML documentation.

Module 3: Aggregation and Composition

This module will explore the essential concepts of aggregation and composition in object-oriented
programming. Understanding these relationships enables us to create more complex and structured
applications by defining how classes collaborate. Building on fundamental concepts, we will learn to model
associations in which objects interact or depend on one another, and how these relationships influence
program structure and behavior.

This module provides a comprehensive overview of how class relationships and dependencies are vital in
object-oriented programming, moving us toward building robust, modular applications.

By the end of this module, you will be able to:

e Differentiate between association, aggregation, and composition relationships in object-oriented
programming.

e Implement aggregation and composition in Java to create classes with layered, complex structures.
Use Java I/O streams to read from and write to files.

e Test and debug applications with aggregated and composed classes to ensure reliability in complex
object interactions..

Module 4: Java Data Structures

In this module, students will explore fundamental data structures in Java, beginning with arrays and
ArrayLists and progressing to more complex structures such as HashMaps and generic types.
Understanding data structures is essential for writing efficient, organized, and reusable code, as they
enable programmers to manage and manipulate data effectively.

We’ll introduce arrays, covering how they’re declared, initialized, and used, along with some common
operations. From there, we'll move to the more flexible ArrayList class and discuss its advantages over
traditional arrays. Following this, students will learn about HashMap for managing key-value pairs and
discover the power of generics for creating flexible, type-safe code.



Additionally, this module covers techniques for iterating over arrays and collections, sorting and searching,
and handling common exceptions that can arise when working with data structures. You will also learn
testing and debugging practices specific to data structures to ensure robust and reliable code..

By the end of this module, you will be able to:

e Declare, initialize, and manipulate one-dimensional and multidimensional arrays, performing common
operations such as traversal and modification.

e Use the ArrayList class to store and manage data dynamically, leveraging its advantages over arrays
and applying commonly used methods like add(), removel(), and size().

e Work with HashMaps to store, retrieve, and manipulate data using key-value pairs, and understand
their practical use cases.

e Understand the concept of generics in Java, their syntax, and how they enhance type safety when
working with collections.

e Iterate over arrays and collections using traditional loops, enhanced for-loops, and the Iterator
interface for efficient data traversal.

e Apply sorting techniques, including Arrays.sort() and Collections.sort(), and implement searching
methods, such as linear and binary search, on arrays and lists.

e Identify and handle common exceptions that arise when working with arrays and collections, using
defensive programming practices to ensure program stability.

e Write test cases to validate the behavior of arrays and collections, debug common issues, and use
assertions to ensure the integrity of data structures.

Module 5: Inheritance

Inheritance is a cornerstone of object-oriented programming, allowing developers to create a class
hierarchy that models real-world relationships. In this module, you will explore how inheritance enables
code reuse by extending existing classes to create new subclasses. Understanding inheritance allows you
to build more robust and organized applications with clear class relationships and shared functionality.

Through this module, you will develop a solid understanding of inheritance and apply it to design and
organize Java applications effectively. Each topic combines theoretical concepts with practical examples
to reinforce Java's inheritance principles.

By the end of this module, you will be able to:

e Explain the concept of inheritance, its benefits for code reuse and organization, and how it allows the
creation of a hierarchy of related types.

e Implementinheritance in Java using the extends keyword to define superclasses and subclasses and
understand their relationship.

e Use the super keyword to access superclass constructors and methods, ensuring clean and organized
subclass implementations.

e Override methods in subclasses to provide specific implementations, applying the @Override
annotation to ensure correctness and leveraging polymorphism effectively.

e Understand exception handling in the context of inheritance, including the rules for overridden
methods that throw exceptions and the use of custom exceptions.

e Write unit tests to validate behavior in superclasses and subclasses, ensuring correct implementation
of inheritance features.

e Debug inheritance-related issues by identifying and resolving common problems with method
overriding, constructor calls, and polymorphic behavior.



Module 6: Polymorphism

Polymorphism is one of the core principles of Object-Oriented Programming (OOP). It allows objects to
take on many forms, enabling flexibility and adaptability in code design. With polymorphism, you can write
more modular, maintainable, and scalable programs. This module delves into polymorphism, explaining
how it works in Java and why it is crucial for effective object-oriented programming.

In this module, you will learn how polymorphism enables objects to behave differently depending on their
runtime context. Using techniques such as method overriding, dynamic method dispatch, and abstract
classes, you will understand how Java achieves polymorphic behavior and simplifies software
development. We will also explore how polymorphism interacts with other concepts, such as type casting
and exception handling.

By the end of this module, you will be able to:

e Define polymorphism and explain how it enables a single interface to represent multiple types, using
real-world analogies to contextualize its role in programming.

e Distinguish between compile-time polymorphism (method overloading) and run-time polymorphism
(method overriding), and identify when to use each approach for practical design.

e Demonstrate dynamic method dispatch in Java, explaining how the JVM determines the appropriate
method to call based on the actual type of the object at runtime.

e Utilize abstract classes and methods to design flexible and extensible programs by defining shared
behaviors and structures for related objects.

e Implement polymorphic behavior by using a superclass reference to hold subclass objects, promoting
code generalization and flexibility.

e Perform type casting and type checking, using upcasting and downcasting effectively while leveraging
the instanceof operator to ensure safe runtime type conversions.

e Handle exceptions in polymorphic systems, aligning overridden methods with appropriate exception
types and applying covariant return types and narrowing exception scopes.

e Test polymorphic systems thoroughly, ensuring that subclass-specific methods function correctly
when accessed through superclass references, and use mock objects to validate dynamic behavior.

Module 7: Interfaces and Design Patterns

Interfaces are a cornerstone of Object-Oriented Programming (OOP), providing a way to define contracts
that classes must adhere to. In Java, interfaces are powerful tools for achieving abstraction, enforcing
design consistency, and enabling flexible, scalable systems. They allow you to define method signatures
and constants without dictating how those methods are implemented, making them essential for designing
robust and maintainable codebases.

In this module, you will explore the many facets of interfaces, from their basic syntax to their role in
advanced programming paradigms like functional programming and design patterns. You will also learn
about new features introduced in Java 8 and beyond, such as default and static methods, which have
transformed how interfaces are used.

A Javainterface is a collection of abstract methods that enables abstraction and multiple inheritance. A
class can implement an interface using the 'implements' keyword. When a class implements an interface, it



must provide concrete implementations for all the methods defined in that interface. Interfaces define
contracts or blueprints for classes, promoting loose coupling and flexibility in the code.

In essence, a Java interface serves as a contract, specifying the rules that a class must follow. It enforces
specific behaviors within a class, much like a contract outlines the services a company commits to deliver.

By the end of these sections, you will be able to:

Define interfaces in Java, including their syntax, abstract methods, and constants.
Implement interfaces using the implements keyword and apply advanced concepts such as multiple
interface implementation and interface inheritance.

e Differentiate between interfaces and abstract classes, and decide when to use each based on design
requirements.

e Utilize default and static methods introduced in Java 8 to extend interface functionality and
streamline code design.

e Analyze the role of interfaces in popular design patterns, including Composite, Strategy, Chain of
Responsibility, and Comparable.

e Explore functional programming concepts by using the @Functionallnterface annotation and applying
lambda expressions with functional interfaces.

e Simplify code and improve readability by introducing lambda expressions.

e Handle exceptions in interface methods by declaring and managing exceptions in implementing

classes.
e Write unit tests for interface implementations and leverage interfaces within testing frameworks,

using dependency injection to enable flexible testing.

Module 8: Design Patterns and Best Practices

As you near the conclusion of your journey into Java programming, this module shifts focus to the design
patterns and best practices that elevate your code from functional to elegant, scalable, and maintainable.
Understanding and applying these concepts is critical for designing robust software systems and working
effectively as part of a development team.

In this module, you will explore the foundational design patterns that have shaped modern software
engineering, delve into OOP principles and best practices, and learn how to integrate these patterns into
your Java applications. You’ll also discover advanced techniques for testing and debugging that ensure
your code is reliable, maintainable, and ready for real-world development challenges.

By the end of this module, you will be able to:

e Define design patterns and explain their significance in addressing common software design
challenges.

e Classify design patterns into the three main categories: Creational, Structural, and Behavioral, and
describe their unique purposes.

e Apply object-oriented programming principles, such as the SOLID principles, to create maintainable
and scalable code.

e Demonstrate coding best practices, including composition over inheritance, the DRY (Don't Repeat
Yourself) principle, the KISS (Keep It Simple, Stupid) principle, and refactoring techniques to avoid
code smells.

e Implement popular design patterns in Java, including Singleton, State, Observer, Adapter, Template,
and Prototype, with hands-on examples.

e Analyze real-world scenarios to identify where and how design patterns can be effectively applied.

e Identify common pitfalls in the use of design patterns and apply best practices to avoid them.






